夏朝历史 商朝历史 周朝历史 汉朝历史 秦朝历史 三国历史 晋朝历史 南朝历史 北朝历史 隋朝历史 唐朝历史 宋朝历史 元朝历史 明朝历史 清朝历史
×取消主题

2024年高一数学知识点总结及公式 高一数学知识点总结(模板12篇)

栏目:一号文库 更新时间:2024-07-08 06:12:02 作者:文/会员上传 发布时间: 人气: 下载.docx文档
文章导读:围绕工作中的某一方面或某一问题进行的专门性总结,总结某一方面的成绩、经验。怎样写总结才更能起到其作用呢?总结应该怎么写呢?下面是小编整理的个人今后的总结范文,欢迎阅读分享,希望对大家有所帮助。高一数学知识点总结及公式篇一1.下列几种关于投影......

围绕工作中的某一方面或某一问题进行的专门性总结,总结某一方面的成绩、经验。怎样写总结才更能起到其作用呢?总结应该怎么写呢?下面是小编整理的个人今后的总结范文,欢迎阅读分享,希望对大家有所帮助。

高一数学知识点总结及公式篇一

1.下列几种关于投影的说法不正确的是()

a.平行投影的投影线是互相平行的

b.中心投影的投影线是互相垂直的

c.线段上的点在中心投影下仍然在线段上

d.平行的直线在中心投影中不平行

2.根据下列对于几何结构特征的描述,说出几何体的名称:

(1)由7个面围成,其中两个面是互相平行且全等的五边形,其他面都是全等的矩形;

(3)一个等腰直角三角形绕着底边上所在的直线旋转360度形成的封闭曲面所围成的图形.

高一数学知识点总结及公式篇二

1、静态的观点有两个平行的平面,其他的面是曲面;动态的观点:矩形绕其一边旋转形成的面围成的旋转体,象这样的旋转体称为圆柱。

2、定义:以矩形的一边所在直线为旋转轴,其余各边旋转而形成的的曲面所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于圆柱轴的边旋转而成的面叫圆柱的侧面,圆柱的侧面又称圆柱的面。无论转到什么位置,不垂直于轴的边都叫圆柱侧面的母线。

表示:圆柱用表示轴的字母表示。

规定:圆柱和棱柱统称为柱体。

3、静态观点:有一平面,其他的面是曲面;动态的观点:直角三角形绕其一直角旋转形成的面围成的旋转体,像这样的旋转体称为圆锥。

4、定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥。旋转轴叫圆锥的轴;垂直于旋转轴的边旋转而成的圆面成为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫圆锥的侧面,圆锥的侧面又称圆锥的面,无论旋转到什么位置,这条边都叫做圆锥侧面的母线。

表示:圆锥用表示轴的字母表示。

规定:圆锥和棱锥统称为锥体。

5、定义:以半直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆台。还可以看成用平行于圆锥底面的平面截这个圆锥,截面于底面之间的部分。旋转轴叫圆台的轴。垂直于旋转轴的边旋转而形成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫圆台侧面的母线。

表示:圆台用表示轴的字母表示。

规定:圆台和棱台统称为台体。

6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称为球。半圆的圆心称为球心,连接球面上任意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径。

表示:用表示球心的字母表示。

简单组合体的结构:

1、`由简单几何体组合而成的几何体叫简单组合体。现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。如教材图1.1-11的前两个图形,他们是多面体与多面体的组合体;1.1-11的后两个图形,他们是由一个多面体从中截去一个或多个多面体得到的组合体。

2、常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合。其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体;另一种是由简单简单几何体截去或挖去一部分而成的简单组合体。

将本文的word文档下载到电脑,方便收藏和打印

推荐度:

点击下载文档

搜索文档

高一数学知识点总结及公式篇三

以下知识点需要我们去理解,记忆。1、数学所说的直线是无限延伸的,没有起点,也没有终点。

2、数学所说的平面是无限延伸的,没有起始线,也没有终点线。

3、公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

4、过不在同一直线上的三点,有且只有一个平面。

5、如果两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。

6、平行于同一条直线的两条直线平行。

7、直线在平面内,因为直线上有无数多个点,平面上也有无数多个点,因此用子集的符号表示直线在平面内。

8、直线与平面的位置关系,直线与直线的位置关系是本节课的重点和难点。

9、做位置关系的题目,可以借助实物,直观理解。

一、直线与方程考试内容及考试要求

考试内容:

1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;

2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;

考试要求:

1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直

线的方程判断两条直线的位置关系。

高一数学知识点总结及公式篇四

复数知识点网络图

2.复数中的难点

(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.

(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.

(3)复数的辐角主值的求法.

(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.

3.复数中的重点

(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.

(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.

(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.

(4)复数集中一元二次方程和二项方程的解法.

高一数学知识点总结及公式篇五

有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。可以把每条定理、每道例题都当作习题,认真地重证、重解,并适当加些批注,特别是通过对典型例题的讲解分析,最后要抽象出解决这类问题的数学思想和方法,并做好书面的解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,学生要尽可能独立解题,因为求解过程,也是培养分析问题和解决问题能力的一个过程,同时更是一个研究过程。

首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。

其次,要提高数学能力,当然是通过课堂来提高,要充分利用好课堂这块阵地,学习数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。

最后,在数学课堂中,老师一般少不了提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是很有价值的。对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。

一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。"不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。"自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。

高一数学知识点总结及公式篇六

直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

多面体

1、棱柱

棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质

(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面(对角面)是平行四边形

2、棱锥

棱锥的性质:

(1)侧棱交于一点。侧面都是三角形

3、正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

高一数学知识点总结及公式篇七

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性

定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

高一数学知识点总结及公式篇八

每学期结束后都会反思自己,教学上的,工作上的。这几天要二级转正了,又要上缴这些资料,整理一下。这学期一起带高一的四个同事,都是很优秀的,两个是我以前的物理老师,一个是书记,另外一个是科组里面解题最厉害,也是我努力的目标,我的师兄,虽然大我五岁,看起来还是跟高中生没有多大差别。可能是跟这些高手的缘故,这学期备课我是相当的认真,并没有因为去年上过而随便应付上课。

下面是我去年写的教学反思:

1、课堂纪律要求严格,决不允许任何人随意说话干扰他人。这一点虽然简单但我认为很重要,是老师能上好课、学生能听好课的前提,总的来说,这一点我做得还不错,几个“活跃分子”都反映物理老师厉害,不敢随便说话。

2、讲课时随时注意学生的反应,一旦发现学生有听不懂的,尽量及时停下来听听学生的反应。

3、尽量给学生最具条理性的笔记,便于那些学习能力较差的同学回去复习,有针对性的记忆。

4、注重“情景”教学。高中物理有很多典型情景,在教学中我不断强化它们,对于一些典型的复杂情景,我通常将其分解成简单情景,提前渗透,逐步加深。每节课我说得最多的一个词就是“情景”,每讲一道题,我都会提醒学生“见过这样的情景吗?”“你能画出情景图吗?”“注意想象和理解这个情景”。

5、重视基本概念和基本规律的教学。首先重视概念和规律的建立过程,使学生知道它们的由来;对每一个概念要弄清它的来龙去脉。在讲授物理规律时不仅要让学生掌握物理规律的表达形式,而且更要明确公式中各物理量的意义和单位,规律的适用条件及注意事项。了解概念、规律之间的区别与联系,如:运动学中速度的变化量和变化率,力与速度、加速度的关系,动能定理和机械能守恒定律的关系,通过联系、对比,真正理解其中的道理。通过概念的形成、规律的得出、模型的建立,培养学生的思维能力以及科学的语言表达能力。

6、重视物理思想的建立与物理方法的训练。物理思想的建立与物理方法训练的重要途径是讲解物理习题。讲解习题时把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,从高一一开始就训练学生作示意图的能力,如:运动学习题要求学生画运动过程示意图,动力学习题要求学生画物体受力与运动过程示意图,并且要求学生审题时一边读题一边画图,养成习惯。解题过程中,要培养学生应用数学知识解答物理问题的能力。

这一学期来,也遇到很多困难。我反思在教学中存在的问题。首先,落实不到位。本来应该当时落实没能及时落实。再有就是教学过于死板,平时让学生参与的机会较少,总是满足于自己一言堂。不给学生机会出错,而学生从自己的错误中得到的认识会更加深刻。再者由于课时有限,没有足够的课堂练习时间。

高一数学知识点总结及公式篇九

1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为r.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

【函数的应用】

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

求函数的零点:

1(代数法)求方程的实数根;

2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

高一数学知识点总结及公式篇十

为借鉴。这叫“一人有病,全体吃药。”高中数学课没有那么多时间,除了少数几种典型错,其它错误,不能一一顾及。只能“谁有病,谁吃药”。如果学生“有病”,而自己却又忘记吃药,那么没人会一再地提醒他应该注意些什么。如果能及时改错,那么错误就可能转变为财富,成为不再犯这种错误的预防针。但是,如果不能及时改错,这个错误就将形成一处隐患,一处“地雷”,迟早要惹祸。有的学生认为,自己考试成绩上不去,是因为自己做题太粗心。而且,自己特爱粗心。其实,原因并非如此。打一个比方。比如说,学习开汽车。右脚下面,往左踩,是踩刹车。往右踩,是踩油门。其机械原理,设计原因,操作规程都可以讲的清清楚楚。如果新司机真正掌握了这一套,请问,可以同意他开车上街吗?恐怕他自己也知道自己还缺乏练习。一两次能正确地完成任务,并不能说明永远不出错。练习的数量不够,往往是学生出错的真正原因。大家一定要看到,如果,自己的基础背景是地雷密布,隐患无穷,那么,今后的数学将是难以学好的。

积累资料随时整理

要注意积累复习资料。把课堂笔记,练习,区单元测验,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。

精挑慎选课外读物

初中学生学数学,如果不注意看课外读物,一般地说,不会有什么影响。高中则大不相同。高中数学考的是学生解决新题的能力。作为一名高中生,如果只是围着自己的老师转,不论老师的水平有多高,必然都会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,看看外面的世界。当然,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事倍功半。

高一数学知识点总结及公式篇十一

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.

3、函数零点的求法:

(1)(代数法)求方程的实数根;

(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

(1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

(3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

猜你感兴趣:

1.高一化学必修一重点知识点归纳

2.高一化学必修一重要知识点整理

3.高一化学必修一重点知识点

4.高中化学必修一必备知识点总结

5.人教版高一英语必修一知识点归纳

高一数学知识点总结及公式篇十二

棱锥的的性质:

(1)侧棱交于一点。侧面都是三角形

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

esp:

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

分享到:
赞助商AD位
个性签名:无意影响世界,但求安顿自己。
近期热门
赞助商AD位
格言警句:天下本无事,庸人自扰之。
本站最新文章
本栏图文推荐
赞助商AD位
格言警句:天下本无事,庸人自扰之。
网站首页|关于本站|网站地图
趣历史感谢每一位喜欢本站的人,欢迎将本站分享给你的朋友!历史知识尽在 ─ 趣历史!
本站部分内容来源于互联网,若无意侵犯您的权利,请联系我们及时删除
鲁ICP备2021008856号-18 Copyright © 2021-2024 趣历史 www.028gtxx.cn 版权所有
DOWN